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Introduction
The 36th Annual Workshop on Mathematical Problems in Industry (MPI), was held

virtually for the first time from June 14–18, 2020. Participants from multiple time zones
across the globe coordinated their efforts to work on the industrial problem presented.
Special thanks go to the lead organizer, Taras Lakoba of the University of Vermont, who
handled all the hosting and technical duties. Other members of the organizing committee
were David A. Edwards and Louis Rossi (University of Delaware), Linda Cummings (New
Jersey Institute of Technology), and Richard Moore (Society for Industrial and Applied
Mathematics).

At the workshop, several industrial representatives from Gore (Uwe Beuscher, Va-
sudevan Venkateshwaran, and Zhenyu He) presented the following problem in evaporation
in porous media.

In certain liquid filtration problems, a fluid flows through a porous media designed to
trap solute molecules. (In the case under consideration, the porous media is polytetrafluo-
roethylene, better known as PTFE.) As the solvent evaporates, these surfactant molecules
are left behind on the internal pore walls. Questions then arise about the mass distribution
of the solute molecules left as the solvent evaporates, whether the pores will clog as the
evaporation process occurs, etc.

This manuscript is really a collection of reports from teams in the group working on
several aspects of the problem. Here is a brief summary of each:

1. Breward et al. consider a pore-level analysis. Solute transport and pore clogging are
considered for two cases. In the first, the pores are treated as fluid-filled cylinders
bounded by the porous media matrix. In the second, the porous media is treated as
solid cylinders immersed in the solvent. Analytical and numerical results are obtained,
indicating how the pores could clog with solute as the solvent evaporates.

2. Tilley and Broadbridge take a more macroscale approach, considering porous media
flow in the filter as a whole. After specifying a suitable dimensionless PDE model,
they perform numerical simulations to track the evaporation front and concentration
of dissolved surfactant molecules.

3. Gu et al. examine the case of two surfactants in water using a ternary diagram and a
system of ODEs to track their evolution.

In addition to the authors of these reports, the following people participated in the
group discussions:

Eduardo Corona and Pejman Sanaei, New York Institute of Technology
Donald Schewendeman, Rensselær Polytechnic Institute
Naren Vohra, Oregon State University
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1 Geometry

In this section we examine the evaporation dynamics in a single pore. We consider the pore
to be a cylinder with radius Rw (here the subscript “w” stands for “wall”) and height H. We
begin by tracking the position of the evaporating front h̃(r̃, t̃) at the top of the evaporating
drop.

The advancing contact angle between the filter (which is made of PTFE) and water is
greater than π/2 [19], and the equilibrium one seems to be as well. Therefore, in general h̃
will depend on r. With a contact angle greater than π/2, the liquid in the pore forms a silo
shape (see Fig. 1.1). The top of the silo will just be that portion of a sphere that intersects
the pore at the proper angle (a spherical cap), as illustrated in Fig. 1.1. (Note the symmetry
in θ.)

Rw cscα

h̃(r̃, t̃)

Rw

Rw cotα

h̃(Rw, t̃)

α

Figure 1.1: Cross-sectional schematic of top of evaporating drop.

If we let the contact angle be α+π/2, then from Fig. 1.1 the formula for the evaporating
front h̃(r̃, t̃) is given by

r̃2 + [h̃(r̃, t̃)− h̃(Rw, t̃) +Rw cotα]2 = (Rw cscα)2, (1.1)

where the term in the bracket represents the height of the evaporating front above the center
of the sphere. Hence the movement of the entire front h̃(r̃, t̃) can be inferred from the position
of the contact line h̃(Rw, t̃).

We use the natural scales for the variables:

r =
r̃

Rw

, h(r, t) =
h̃(r̃, t̃)

H
, (1.2)
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where we leave discussion of the time scale to the next section. Substituting (1.2) into (1.1),
we obtain

R2
wr

2 + [Hh(r, t)−Hh(1, t̃) +Rw cotα]2 = (Rw cscα)2

r2 + [ε−1h(r, t)− ε−1h(1, t) + cotα]2 = csc2 α, ε =
Rw

H
. (1.3)

We choose the letter ε advisedly, since from the Appendix we see that the aspect ratio is
much smaller than 1. Therefore to obtain a dominant balance, we must have

h(r, t) = h0(t) + εh1(r, t), h0(t) = h(1, t), (1.4)

and hence to leading order the evaporating front is independent of r. In other words, the
movement of the front can be tracked just by tracking the movement of the intersection point
with the pore wall.

Some articles specify a receding contact angle for PTFE which is less than π/2. In that
case, the evaporating front is concave, but the leading order is still independent of r due to
the scaling.

2 Constant Radius (Adsorption)

We first consider the case where molecules leave the bulk via adsorption to the wall and
the evaporating front. Since the evaporation rate is so slow (see the Appendix), we ignore
convection in the evaporating region, so we have the standard diffusion equation in a cylinder,
symmetric in θ:

∂C̃

∂t̃
= D̃

(
1

r̃

∂

∂r̃

(
r̃
∂C̃

∂r̃

)
+
∂2C̃

∂z̃2

)
, 0 ≤ r̃ ≤ Rw, 0 ≤ z̃ ≤ h̃(r̃, t̃), (2.1)

where C̃ is the (volume) concentration in the pore (tube) and D̃ is the diffusion coefficient.
In this manuscript we will largely treat D̃ as a scalar constant. All of our work carries over
immediately to the case where D̃ depends on C̃; the case where D̃ is a tensor is considered
briefly in Sec. 8.

Adsorption occurs when a flux drives molecules to the surface; hence we have

−D̃∂C̃
∂r̃

(Rw, z̃, t̃) =
∂Γ̃w

∂t̃
, (2.2)

where we recall the negative sign in the definition of the flux. Here Γ̃w is the (surface)
concentration adsorbed onto the surface of the tube. (We use the different letter to emphasize
the fact that the two concentrations have different units.) Prior to the drying process, the
filter is saturated with water and has hence come to some sort of equilibrium already with
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some of the concentration already adhered to the surface. Thus we have the following initial
conditions:

C̃(r̃, z̃, 0) = Ci, Γ̃w(z̃, 0) = Γ̃w,i > 0. (2.3)

Since C̃ is uniform at the initial wet equilibrium, Γ̃w will be as well. Finally, we impose a
symmetry condition at the midline of the pore (z̃ = 0), since the pore is drying from both
ends:

∂C̃

∂z̃
(r̃, 0, t̃) = 0. (2.4)

We delay discussion of the form of Γ̃w to Section 2.1.
We now make the following simplifying assumptions:

1. We consider concentrations only up to the critical micelle concentration (CMC); in
other words, the particles do not agglomerate in solution, but rather adhere to the wall
as monomers. Note from the Appendix that the CMC is several orders of magnitude
larger than the initial concentration, so this seems to be a reasonable assumption.

2. Following the above, in this section we do not consider narrowing of the channel due
to the adhesion of the polymers.

To solve these equations, we first introduce scalings into (2.1). We use (1.2) as well as

C(r, z, t) =
C̃(r̃, z̃, t̃)

Ci

, z =
z̃

H
, t =

t̃

t∗
, (2.5a)

where we leave the time scale undetermined for now. We use a slightly different factor to
normalize Γ̃w, for reasons that will become clear below. There are only a certain number
of sites on the surface to which the molecules can adsorb. We take these sites as having
area concentration Γw,T, where the subscript “T” stands for “total.” Using this quantity to
normalize, we obtain

Γw(z, t) =
Γ̃w(z̃, t̃)

Γw,T

. (2.5b)

Substituting (1.2) and (2.5) into (2.1), we have

Ci

t∗

∂C

∂t
= D̃Ci

[
1

R2

1

r

∂

∂r

(
r
∂C

∂r

)
+

1

H2

∂2C

∂z2

]
, 0 ≤ r ≤ 1, 0 ≤ z ≤ h(r, t)

∂C

∂t
= D

[
ε−2 1

r

∂

∂r

(
r
∂C

∂r

)
+
∂2C

∂z2

]
, D =

D̃t∗
H2

. (2.6)

Equation (2.6) motivates a perturbation series of the form

C(r, z, t; ε) = C0(r, z, t) + ε2C2(r, z, t) + · · · . (2.7)
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Substituting (2.7) into (2.6), we obtain, to leading two orders,

D
∂

∂r

(
r
∂C0

∂r

)
= 0, (2.8a)

D
∂

∂r

(
r
∂C2

∂r

)
=
∂C0

∂t
−D∂

2C0

∂z2
. (2.8b)

Since r-dependent solutions of (2.8a) have a term of the form log r that is unphysical at
the origin, we surmise that C0 is a function of z and t only, especially since the leading order
of h is also independent of r.

To verify this, we introduce our scalings into (2.2):

−CiD̃

Rw

(
∂C0

∂r
+ ε2

∂C2

∂r

)
(1, z, t) =

Γw,T

t∗

∂Γw

∂t

−D̃t∗
R2

w

(
∂C0

∂r
+ ε2

∂C2

∂r

)
(1, z, t) =

Γw,T

RwCi

∂Γw

∂t

−D
ε2

(
∂C0

∂r
+ ε2

∂C2

∂r

)
(1, z, t) = kw

∂Γw

∂t
, kw =

Γw,T

RwCi

. (2.9)

To leading order, we have that
∂C0

∂r
(1, z, t) = 0,

as expected. With no flux at the wall or the centerline, we may conclude that C0 is a function
of z and t only, the specific value of which can be determined by solving (2.8b).

To eliminate the ∂C2/∂r term in (2.9), we integrate (2.8b) over r:∫ 1

0

D

r

∂

∂r

(
r
∂C2

∂r

)
r dr =

∫ 1

0

∂C0

∂t
−D∂

2C0

∂z2
r dr

D
∂C2

∂r
(1, z, t) dr =

1

2

(
∂C0

∂t
−D∂

2C0

∂z2

)
, (2.10)

where we have used the fact that C0 is independent of r. Substituting (2.10) into the next
order of (2.9) and rearranging, we have

−1

2

(
∂C0

∂t
−D∂

2C0

∂z2

)
= kw

∂Γw

∂t

∂C0

∂t
= D

∂2C0

∂z2
− 2kw

∂Γw

∂t
, 0 ≤ z ≤ h0(t). (2.11)

Note that here we have explicitly indicated that to leading order, the evaporating front
is independent of r; the appropriate initial condition is

h0(0) = 1. (2.12a)
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The remaining conditions are given by using these scalings in (2.3) and (2.4) to obtain

C0(z, 0) = 1,
∂C0

∂z
(0, t) = 0, Γw(z, 0) = Γi, Γi =

Γ̃w,i

Γw,T

. (2.12b)

The system will be closed when we have a condition at the interface z = h(t), which we
obtain from concentration of mass. In addition to the concentration in the pore, we must also
keep track of the concentration on the pore, and perhaps one other source of mass. In the
same way that the particles can adsorb to the surface, it is also possible that they can adsorb
to the evaporation front h. We denote this concentration as Γ̃h(r̃, t̃); then conservation of
mass becomes

d

dt̃

[
2π

∫ Rw

0

∫ h̃0(t̃)

0

C̃(r̃, z̃, t̃)r̃ dz̃ dr̃ + 2πRw

∫ H

0

Γ̃w(z̃, t̃) dz̃ + 2π

∫ Rw

0

Γ̃h(r̃, t̃)r̃ dr̃

]
= 0.

(2.13)
Introducing our scalings, we have, to leading order,

d

dt

[
CiR

2
wH

∫ 1

0

∫ h0(t)

0

C0(z, t)r dz dr +RwHΓw,T

∫ 1

0

Γw(z, t) dz +R2
wΓh,T

∫ 1

0

Γh(t)r dr

]
=0,

where we note that since C0 is independent of r, to leading order Γ̃h will be as well. Thus
we define

Γh(t) =
Γ̃h(r̃, t̃)

Γh,T
, (2.14)

in an analogous manner to (2.5b). For notational simplicity, we do not append the subscript
0 to the leading orders of Γ, since we do not need to compute to next order as we do with
C.

Continuing to simplify, we obtain

d

dt

[
1

2

∫ h0(t)

0

C0(z, t) dz +
Γw,T

CiRw

∫ 1

0

Γw(z, t) dz +
Γh,T
CiH

Γh(t)

2

]
= 0,∫ h0(t)

0

∂C0

∂t
dz +

dh0

dt
C0(h0(t), t) + 2kw

∫ 1

0

∂Γw

∂t
(z, t) dz + kh

dΓh
dt

= 0, kh =
Γh,T
CiH

,

where we have used Leibniz’s Rule. Substituting (2.11) and (2.12b) into the above yields
the following:∫ h0(t)

0

D
∂2C0

∂z2
− kw

∂Γw

∂t
dz +

dh0

dt
C0(h0(t), t) + 2kw

∫ 1

0

∂Γw

∂t
(z, t) dz = −kh

dΓh
dt

D
∂C0

∂z
(h0(t), t) +

dh0

dt
C0(h0(t), t) + 2kw

∫ 1

h0(t)

∂Γw

∂t
(z, t) dz = −kh

dΓh
dt

.
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But the wall concentration doesn’t change once the evaporation front has passed by (h0(t) <
z < 1), so we obtain

D
∂C0

∂z
(h0(t), t) +

dh0

dt
C0(h0(t), t) = −kh

dΓh
dt

. (2.15)

Equation (2.15) has a nice physical interpretation: any mass lost through the interface
must either contribute to Γh or to the wall (which is of concentration C(h0(t), t) times the
differential dh due to the receding of the evaporation front).

However, we note one important fact: here the correction is O(ε) from the next order of h,
while in the other sections, the correction is O(ε2) from the next order of C. Therefore, if we
were to calculate the next-order correction, we would have to insert terms in the expansion
such as (2.7) at O(ε).

As a final aside, we note that even in situations where the aspect ratio is not small, we
can eliminate the r-dependence by examining the cross-sectional average

〈C〉(z, t) = 2

∫ 1

0

C(r, z, t)r dr, (2.16)

which yields essentially the same equations for 〈C〉 as those for C0 in this section.

2.1 Adsorption Constitutive Relations

To further close the system, we need a constitutive equation for the surface concentrations
and an equation for the evolution of the evaporation front.

There are several possibilities for the constitutive relation for Γw and Γh. Many of these
constitutive models may be found in [8, chap. 5]; first we consider the Langmuir adsorption
model

Γ·(C) =
K·C

1 +KC
, (2.17)

where K is a normalized equilibrium constant, C is considered to be the value at the interface,
and (2.17) could hold for either Γ with appropriate subscript notation (hence the dot where
the subscript would be). The Langmuir law is expressed in terms of fractions of adsorption
sites, which is why we normalized as in (2.5b). Equation (2.17) can be simplified to

Γ·(C) = K·C (2.18)

in the limit of small K· or small C.
Next we turn our attention to the evaporation rate, which measures the movement of h̃

over time:

∂h̃

∂t̃
= −Ẽ(C̃(h̃(t̃), t̃), =⇒ dh0

dt
= −E(C(h0(t), t)), E(C) =

t∗Ẽ(C̃)

H
. (2.19)

where E is the evaporation rate. Here we have used the fact that the leading order of h̃ is
independent of r to introduce the total derivative. Note that in the simplest case where E
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is just a constant, with a particular choice of t∗ (namely the evaporation rate), we can force
E = 1.

More discussion of these issues and more general models for Γ and E are given in Sec. 9.

3 Narrowing Pore Due to Deposition

The porous media can gain as much as 25% in weight after drying, which suggests that
the pore may narrow significantly during the drying process. Hence we replace Rw with a
varying radius R̃(z̃, t̃). We assume that material precipitates out of solution at the interface
rather than adsorbing onto it; hence the boundary condition at the moving wall is given by

−

(
D̃
∂C̃

∂n
+
∂R̃

∂t̃
C̃

)
(R̃(z̃, t̃), z̃, t̃) = Q̃w(C̃), (3.1)

where Q̃w is the precipitation flux. A discussion of possible constitutive equations for Q̃w is
given in Section 3.1.

We make several remarks:

1. Comparing the left-hand sides of (2.2) and (3.1), we note that since R̃ is no longer
independent of z̃, the derivative in (3.1) is now the normal derivative. Moreover, since
the interface is no longer independent of t, there is a convective flux, and the velocity
is given by the interface velocity ∂R̃/∂t̃.

2. Comparing the right-hand sides of (2.2) and (3.1), we see that Q̃w plays the role of
∂Γ̃w/∂t̃, and it will play a similar role in the derivations below. However, we chose
different notation since we wanted to emphasize that the physical mechanism is different
from adsorption. (Moreover, the correspondence is not exact once constitutive relations
are introduced; see Sec. 3.1.) We acknowledge that due to the discussion after (3.13),
this mechanism may not be operative in our system, but having a model for other
filters should be useful.

3. As Q̃w is analogous to ∂Γ̃w/∂t̃, we expect it to be positive. This is consistent with the
placement of the minus sign on the left-hand side of (3.1), as both ∂C̃/∂n and ∂R̃/∂t̃
are negative.

We also note that the radius of the pore will decrease as the solute precipitates onto it;
hence we have

∂R̃

∂t̃
= −χ̃Q̃w, (3.2)

where χ̃ is a constant.
To solve these equations, we first introduce scalings into (3.1). We use the independent

scales from Sec. 2 as well as

R(z, t) =
R̃(z̃, t̃)

Rw

, (3.3)
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which means that (2.6) now holds on the new domain 0 ≤ r ≤ R(z, t). (We also note that
R should really be expanded in powers of ε as in (2.7). However, since we are solving only
to leading order, we ignore that detail for now, as we did for Γ in the previous section.)

To verify that C0 is still independent of r, we simplify (3.1). First we note that the
appropriate direction for the normal derivative will be given by(

1,−∂R̃
∂z̃

)
=

(
1,−Rw

H

∂R

∂z

)
=

(
1,−ε∂R

∂z

)
, (3.4)

which is also equal to the normal vector, up to O(ε2). Using that result and our scalings in
(3.1), we obtain, to leading order,

−
[
CiD̃

(
1

Rw

∂C

∂r
,

1

H

∂C

∂z

)
·
(

1,−ε∂R
∂z

)
+
Rw

t∗

∂R

∂t
CiC

]
(R(z, t), z, t) = Q̃w(C̃)

−

[
D̃t∗
R2

w

(
∂C

∂r
, ε
∂C

∂z

)
·
(

1,−ε∂R
∂z

)
+
∂R

∂t
C

]
(R(z, t), z, t) =

t∗
CiRw

Q̃w(C̃)

−
[
D

ε2

(
∂C

∂r
, ε
∂C

∂z

)
·
(

1,−ε∂R
∂z

)
+
∂R

∂t
C

]
(R(z, t), z, t) = Qw(C), (3.5a)

Qw(C) =
t∗

CiRw

Q̃w(C̃).

(3.5b)

The leading order is O(ε−2), and the balance (as expected) is that ∂C0/∂r = 0 at the
deposition interface, so we may conclude that C0 is again a function of z and t only.

Using this fact, we have that the next order is given by

−
[
D

ε2

(
ε2
∂C2

∂r
, ε
∂C0

∂z

)
·
(

1,−ε∂R
∂z

)
+
∂R

∂t
C0

]
(R(z, t), z, t) = Qw(C0), (3.6)

and hence the O(ε2) correction to the normal vector does not contribute at this order either.
Multiplying the O(1) terms by R(z) and rearranging, we obtain the following:

−DR(z, t)
∂C2

∂r
(R(z, t), z, t) = −D∂C0

∂z
R(z, t)

∂R

∂z
+R(z, t)

∂R

∂t
C0 +R(z, t)Qw(C0), (3.7)

To eliminate the ∂C2/∂r term in (3.7), we integrate (2.8b) over r:∫ R(z,t)

0

D

r

∂

∂r

(
r
∂C2

∂r

)
r dr =

∫ R(z,t)

0

∂C0

∂t
−D∂

2C0

∂z2
r dr

DR(z, t)
∂C2

∂r
(R(z, t), z, t) dr =

(
∂C0

∂t
−D∂

2C0

∂z2

)
[R(z, t)]2

2
, (3.8)
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where we have used the fact that C0 is independent of r. Substituting (3.8) into (3.7) and
rearranging, we have

−D1

2

∂C0

∂z

∂[R(z, t)]2

∂z
+

1

2
C0
∂[R(z, t)]2

∂t
+R(z, t)Qw(C0) = −

(
∂C0

∂t
−D∂

2C0

∂z2

)
[R(z, t)]2

2

∂(C0[R(z, t)]2)

∂t
= D

∂

∂z

(
[R(z, t)]2

∂C0

∂z

)
− 2R(z, t)Qw(C0). (3.9)

We make two remarks:

1. If there is no deposition, R(z, t) = 1 and (3.9) reduces to a very similar form to (2.11),
again with Qw playing the role of ∂Γw/∂t.

2. Note that (3.9) can also probably be derived using a mass balance in an infinitesimal
disc.

This equation would then be coupled to the scaled version of the deposition equation
(3.2):

Rw

t∗

∂R

∂t
= −χ̃Q̃w(C̃)

∂R

∂t
= −χ̃Ci

t∗
CiRw

Q̃w = −χQw(C0), χ = χ̃Ci. (3.10)

This PDE requires an initial condition. Again, we expect the system to be in a “wet equi-
librium” at t = 0. Since this equilibrium will have a uniform concentration, we expect that
R(z, 0) will be uniform in z as well:

R(z, 0) = Ri ≤ 1, (3.11)

where we take into account that if the wet equilibrium concentration (in the absence of
deposition) is greater than the saturation concentration Csat, then deposition will occur and
Ri < 1. (In that case, Ci = Csat, since the equilibrium will then be determined by the
absence of deposition.)

The system is closed once we derive an equation analogous to (2.15). In this case,
conservation of mass becomes

d

dt̃

[
2π

∫ h̃0(t̃)

0

∫ R̃(z̃,t̃)

0

C̃(r̃, z̃, t̃)r̃ dr̃ dz̃ + 2π

∫ H

0

∫ t̃

0

Q̃w(C̃)R̃(z̃, t̃′) dt̃′ dz̃

]
= 0.

Here the first term tracks the mass in the liquid, and the second term tracks the mass that
has deposited over time. We make the following remarks:

1. This isn’t technically correct if Ri < 1, as it doesn’t track the mass that has deposited
before t = 0. But since that mass is never removed (since C is always increasing), it
won’t contribute to the derivative.
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2. We are ignoring any adsorption at the evaporation front, but this may easily be added
in a manner analogous to (2.13).

Introducing our scalings, we have, to leading order,

H
d

dt

[
CiR

2
w

∫ h0(t)

0

∫ R(z,t)

0

C0(z, t)r dr dz + t∗

∫ 1

0

∫ t

0

CiRw

t∗
Qw(C0)RwR(z, t) dt′ dz

]
= 0

d

dt

[∫ h0(t)

0

C0(z, t)
[R(z, t)]2

2
dz +

∫ t

0

∫ 1

0

Qw(C0)R(z, t′) dz dt′

]
= 0

1

2

∫ h0(t)

0

∂(C0[R(z, t)]2)

∂t
dz +

1

2

dh0

dt
C0(h0(t))[R(h0(t), t)]2 +

∫ 1

0

Qw(C0)R(z, t) dz = 0,

where we have used Leibniz’s Rule. Continuing to simplify using (3.9), we obtain∫ h0(t)

0

D
∂

∂z

(
[R(z, t)]2

∂C0

∂z

)
− 2R(z, t)Qw(C0) dz

+
dh0

dt
C0(h0(t))[R(h0(t), t)]2 + 2

∫ h0(t)

0

Qw(C0)R(z, t) dz = 0,

where we have used the fact that there is no deposition above the evaporation front. Con-
tinuing to simplify, we have the following:

D[R(h0(t), t)]2
∂C0

∂z
(h0(t), t) +

dh0

dt
C0(h0(t))[R(h0(t), t)]2 = 0

D
∂C0

∂z
(h0(t), t) +

dh0

dt
C0(h0(t)) = 0, (3.12)

which is exactly (2.15) when the front adsorption Γh is neglected.

3.1 Deposition Constitutive Relations

To close the system, we need a constitutive relation for how Qw depends on C. If C is greater
than the saturation concentration Csat, the particles precipitate out and stick to the surface.
One function that models this is

Q̃w = λ̃(C̃ − C̃sat)H(C̃ − C̃sat) ≡ λ̃(C̃ − C̃sat)
+

Qw =
t∗

CiRw

λ̃Ci(C − Csat)
+

= λ(C − Csat)
+, λ =

t∗λ̃

Rw

, (3.13)

where we have used (3.5b). Here λ > 0 is a constant.
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Theoretically, there may be an objection to this form because it is irreversible. In other
words, if C somehow declined below Csat, then we would expect the particles to detach from
the wall and return to solution, rendering Qw < 0, which is forbidden by the form of (3.13).
Physically this should not happen, because C is growing as a function of time due to the
evaporation front reducing the volume. Indeed this is the behavior seen experimentally.

Moreover, the CMC concentration CCMC is less than Csat, so micelles would form before
deposition happens. And recall that we are doing all our computations in the regime where
C < CCMC, as we do not include the complications associated with micelle formation.

With the constitutive relation in (3.13), it is possible for R(z, tc) = 0 for some time tc
before the liquid evaporates completely. At that point, we consider the pore to be clogged
(hence the subscript “c”), and our computations end at that point.

Note that with the choice of constitutive relations, the difference between the adsorption
and deposition cases becomes clear. In particular, using the linear relation (3.13) will in-
troduce a term proportional to C in (3.9). However, using the analogous relation (2.18) in
(2.11) will introduce a term proportional to ∂C0/∂t.

3.2 Numerical Calculations

We solve the deposition model by using the method of lines in Mathematica 12.1. Here we
take the evaporation rate E to be a constant equal to 1, so we have

dh0

dt
= −1. (3.14)

Moreover, in this section for each figure all of the dimensionless parameters are considered
to be 1, except when stated otherwise.
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Figure 3.1: Solutions vs. height, all parameters equal to 1. Upper black curve is evaporation
front. Colored curves denote solutions at uniformly spaced times between 0 and tc. (Spacing
is the same for both graphs, though fewer are shown at left.) Left: Concentration field;
dotted black line indicates the value of Csat = 1. Right: Deposited thickness; lower black
curve represents final distribution at tc.
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Figure 3.2: Solutions vs. height as in Fig. 3.1, except Csat = 2 (the rest of the parameters
are equal to 1.)

Figure 3.1 shows a representative solution of model with all parameters set equal to 1.
Since the saturation concentration is the initial concentration, deposition begins immediately.
As the concentration increases with height, greater deposition occurs near the evaporation
front. Note that the filter clogs totally at some finite time.

In Fig. 3.2, the saturation concentration has been taken equal to 2. Thus some evapo-
ration occurs before deposition occurs, as shown at right. Consequently, tc is larger, corre-
sponding to a higher deposition thickness at z = 0.

Figure 3.3 shows the effect of D on the solution. In particular, when D is small, C
becomes quite large near the evaporating front, with a steep gradient to the bulk. Hence the
bulk of the deposition happens at the evaporation front, with very little beneath, as shown
at top right. In contrast, if D is large, C is nearly uniform in height. This results in nearly
uniform deposition, as shown at bottom right.

Figure 3.4 shows the effect of the reaction rate χ on the solution. In particular, increasing
χ increases the rate of narrowing for a given precipitation flux. Hence the channel occludes
much more rapidly, as shown in the bottom graph.

Figures 3.5 and 3.6 show the effect of the deposition coefficient λ on the solution. In par-
ticular, increasing λ increases the precipitation flux given a particular concentration profile.
Hence a larger value of λ will lead to faster pore occlusion, as shown in the bottom graph of
Fig. 3.5 and the graphs in Fig. 3.6.

The relationship between clogging height and λ is shown directly in Fig. 3.7. As discussed,
increasing λ increases the clogging process, which moves the final clogging height upward
from z = 0, until it asymptotes to z = 1 for very large values of λ.

4 Large-D Asymptotics

Looking at the numerics for large diffusion, we conclude that the concentration is approxi-
mately a function of time alone (see Fig. 3.3). This means there is an underlying asymptotic
structure to be exploited. We expect D � 1, and so we rewrite our variable in powers of
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Figure 3.3: Comparison of effect of D on solution profiles, which are as in Fig. 3.1, except
Csat = 1.1. Top: D = 0.1. Bottom: D = 10. The rest of the parameters are equal to 1.

D−1. As we have already used a subscript for C in (2.7), we use a slightly different notation:

C0(x, t;D) ∼ C0(x, t) +D−1C1(x, t) + · · · . (4.1)

Note that in order for us to neglect C2 in favor of the expression (4.1), ε2 = o(D−1).

4.1 Adsorption

We begin by considering the adsorption case. Substituting (4.1) into (2.11), (2.15), and the
no-flux condition in (2.12b), we have, to leading two orders,

∂2C0

∂z2
= 0,

∂C0

∂z
(h0(t), t) = 0,

∂C0

∂z
(0, t) = 0. (4.2)

∂C0

∂t
+ 2kw

∂Γw

∂t
(C0) =

∂2C1

∂z2
, (4.3a)

∂C1

∂z
(h0(t), t) +

dh0

dt
C0(h0(t), t) = −kh

dΓh
dt

(C0),
∂C1

∂z
(0, t) = 0 (4.3b)

Thus, solving (4.2), we obtain that C0 is a function of time alone, as expected.
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Figure 3.4: Comparison of effect of reaction rate χ on solution profiles, which are as in Fig.
3.3, except D = 1. Top: slow reaction rate (χ = 0.1). Bottom: fast reaction rate (χ = 10).

This fact implies that the left-hand side of (4.3a) is independent of z; hence we may
integrate that equation from z = 0 to h0(t) to obtain

h0

[
dC0

dt
+ 2kw

dΓw

dt
(C0)

]
=
∂C1

∂z

∣∣∣∣∣
z=h

z=0

= −kh
dΓh
dt

(C0)− dh0

dt
C0(t)

d(h0C0)

dt
= −kh

dΓh
dt

(C0)− 2h0kw
dΓw

dt
(C0), (4.4)

where in the first line we have used (4.3b) and the fact that C0 is independent of time. Note
that (4.4) has a nice physical interpretation: the change in the total concentration must be
lost either to the evaporating surface or the walls.

Since we are considering the case of surface adsorption where the walls do not narrow,
we use the constitutive relations in Sec. 2.1. In particular, using the linear functional forms
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Figure 3.5: Comparison of effect of deposition coefficient λ on solution profiles, which are
as in Fig. 3.3, except D = 1. Top: small deposition coefficient (λ = 0.1). Bottom: large
deposition coefficient (λ = 10).

in (2.18) for the Γ, (4.4) becomes

h0
dC0

dt
+
dh0

dt
C0 = −khKh

dC0

dt
− 2h0kwKw

dC0

dt

[h0(1 + 2kwKw) + khKh]
dC0

dt
+
dh0

dt
C0 = 0

d

dt

([
h0

β
+ khKh

]β
C0

)
= 0, β =

1

1 + 2kwKw

,

C0(t) =

(
1 + βkhKh

h0 + βkhKh

)β
, (4.5)

where we have used (2.12a) and the leading order of the initial condition in (2.12b). Since
h0 is decreasing as time increases, the concentration indeed increases as t increases.
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Figure 3.6: A case of fast clogging due to high reaction rate. Solution profiles are as in Fig.
3.4, except λ = 100.
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Figure 3.7: Clogging height as a function of the reaction rate. Csat = 1.1, and all the rest of
the parameters are considered to be 1.

4.2 Deposition

Now we consider the case of deposition on the walls. In this case, (2.11) is replaced by (3.9);
substituting in (4.1) yields, to leading two orders,

∂

∂z

(
[R(z, t)]2

∂C0

∂z

)
= 0 (4.6a)

∂(C0[R(z, t)]2)

∂t
+ 2R(z, t)Qw(C0) =

∂

∂z

(
[R(z, t)]2

∂C1

∂z

)
. (4.6b)

Solving (4.6a) subject to the boundary conditions in (4.2), we again find that C0 is a function
of time alone. Using that fact in (3.10), we conclude that

R(z, t) = R0(t) +O(D−1). (4.7)
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Then integrating (4.6b) in z as before, but using the appropriate expansion of (3.12) instead
of (4.3b), we obtain the following:

h0

(
1

2

∂(R2
0C0)

∂t
+R0Qw(C0)

)
=
R2

0

2

∂C1

∂z

∣∣∣∣∣
z=h

z=0

= −R
2
0

2

dh0

dt
C0

1

2

d(h0R
2
0C0)

dt
= −h0R0Qw(C0). (4.8)

Since we are considering the case of deposition where the walls do narrow, we use the
constitutive relations in Sec. 3.1. For simplicity, we use the constitutive relation in (3.13), as
well as (3.14). Then in Fig. 4.1 we plot the spatial deposition profile for R0 when Csat = 1.1,
χ = 0.1. We see that the pore has shrunken by around 20% in the case of moderate take-up
(λ = 1), and it clogs up very fast when λ = 10.
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Figure 4.1: Plot of the final layer thickness along the pore (deposition) with λ = 1 (left) and
λ = 10 (right).

5 Large-λ Asymptotic Limit

As shown in Fig. 3.6, numerical solutions of the deposition process (3.13) for large precip-
itation rate λ suggest that clogging happens quickly once the saturation concentration has
been reached; this is also indicated in the figure at right of Fig. 4.1. Therefore, we consider
the asymptotic limit of large λ.

From (3.13), we see that with λ � 1, the consequent large saturation rate will force
clogging to occur very quickly after C > Csat. From the figures in Sec. 3.2, the concentration
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is largest at the evaporation front. Therefore, let tsat, the time at which the solution is first
saturated, be defined by

C(h0(tsat), tsat) = Csat. (5.1)

Since clogging occurs for small time near the evaporation front, we introduce the following
scalings:

t̂ = (t− tsat)λ
1/2, ẑ = [h0(tsat)− z]λ1/2, Ĉ(ẑ, t̂) = [C0(z, t)− Csat]λ

1/2 (5.2a)

ĥ(t̂) = [h0(tsat)− h0(t)]λ1/2. (5.2b)

Note that we have chosen the ẑ scaling so that ẑ ≥ 0. These scalings define a small saturated
layer near the evaporating front.

Substituting (5.2) into (3.13) and (3.10), we obtain

Qw = λ(λ−1/2Ĉ)+ =⇒ λ1/2∂R

∂t̂
= −χλ1/2Ĉ+. (5.3)

Substituting (5.2) and (5.3) into (3.9), we have, to leading order,

λ1/2∂(R2Csat)

∂t̂
= Dλ1/2 ∂

∂ẑ

(
R2∂Ĉ

∂ẑ

)
− 2Rλ1/2Ĉ+

2RCsat
∂R

∂t̂
= D

∂

∂ẑ

(
R2∂Ĉ

∂ẑ

)
− 2RĈ+

D
∂

∂ẑ

(
R2∂Ĉ

∂ẑ

)
= 2(1− χCsat)RĈ

+. (5.4)

Substituting (5.2) into (3.12) and expanding to leading order, we obtain one boundary
condition on (5.4):

−D∂Ĉ
∂ẑ

(ĥ(t̂), t̂)− dĥ

dt̂
Csat = 0, (5.5a)

The second condition is given by matching to the outer solution C = Csat:

Ĉ → 0 as ẑ →∞. (5.5b)

In Fig. 5.1 we plot numerical solutions of (5.4) and (5.5) using (3.14). In particular, we
show the free space in the pore R over the pore length for different times.

To obtain some additional analytical insight into our problem, we derive the small-t̂
profile for Ĉ. Initially R ≈ 1 and ĥ ≈ 0, so (5.4) and (5.5a) become

∂2Ĉ

∂ẑ2
≈ 2(1− χCsat)

D
Ĉ, D

∂Ĉ

∂ẑ
(0, t̂) ≈ −dĥ

dt̂
Csat (5.6)

Since χ is small, we take χCsat < 1 in (5.6), in which case our solution is found to be

Ĉ =
Csat√

2(1− χCsat)D

dĥ

dt̂
exp

(
−
√

2(1− χCsat)

D
ẑ

)
. (5.7)
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Figure 5.1: Plot of R along the pore length for different times: t = 0, t = 0.01, t = 0.05,
t = 0.1, t = 1. Parameters used: χ = 1, Csat = 1.1, D = 1.

6 Long-Wave Model for the Exterior Problem

The nature of the ePTFE membrane material is generally a random matrix of polymer fibers
rather than being a porous material with pores channeling through a solid substrate. This
motivates re-examining the analysis from the previous sections in a complementary form –
rather than for transport inside a cylindrical pore (clogging of a pipe), consider the exterior
problem outside a cylindrical polymer fiber. Over considerable lengths of the fibers, there
is a moderate empty space (on the order of 5–10 diameters) between them and the rest of
the matrix (accumulation on nodes, or junctions of fibers, can be considered as an exterior
problem on an idealized spherical geometry). The lengths of the fibers are much longer, so
a long-wave analysis can still be applied with ε = Rw/H � 1, where Rw is now considered
to be the initial fiber radius, rather than the initial pore radius.

We follow the derivation in Sec. 3, except that we consider the domain R(z, t) ≤ r ≤ F ,
where R(z, t) is the fiber radius (including any accrued precipitation) and F is a far-field
radius with F = O(10). At r = F , we either impose a no-flux condition

∂C

∂r
(F, z, t) = 0, (6.1a)

or a Robin-type boundary condition describing the far-field concentration approaching a
constant level, call it “C∞” as in

D
∂C

∂r
(F, z, t) = ε2k[C(F, z, t)− C∞], (6.1b)

where k is an O(1) constant. Note the presence of the ε2 on the right-hand side of (6.1b) is a
consequence of the scaling. Nevertheless, its presence implies that to leading order, there is
no flux through F no matter which of (6.1) we choose. Hence (as before) at leading order we
find that the solution is independent of r due to the leading order no-flux boundary condition
at the surface of the fiber (assuming slow attachment rate).
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Then integrating (2.8b) from R ≤ r ≤ F , we obtain

F 2 −R2(z, t)

2

∂C0

∂t
=
F 2 −R2(z, t)

2
D
∂2C0

∂z2
+ FD

∂C2

∂r
(F, z, t)−RD∂C2

∂r
(R(z, t), z, t), (6.2)

which is analogous to (3.8). When introducing the deposition flux, we note that since the
fiber is now the inner radius, rather than the outer one, the normal is oriented in the opposite
direction to that in (3.1). The mathematical upshot is that we may replace Qw by −Qw in
the work in Sec. 3.

In particular, changing the sign of Qw in (3.7) and substituting the result into (6.2), we
have the following:

∂

∂t

(
F 2 −R2

2
C0

)
=

∂

∂z

(
F 2 −R2

2
D
∂C0

∂z

)
+ FD

∂C2

∂r
(F, z, t)−RQw. (6.3)

This is not the final form, as we must utilize the C2 boundary term at r = F . Using (6.1a)
will eliminate the term to yield

∂

∂t

(
F 2 −R2

2
C0

)
=

∂

∂z

(
F 2 −R2

2
D
∂C0

∂z

)
−RQw, (6.4a)

which is very similar to (3.9). Using (6.1b) would yield a governing equation of the form

∂

∂t

(
F 2 −R2

2
C0

)
=

∂

∂z

(
F 2 −R2

2
D
∂C0

∂z

)
+ kF (C0 − C∞)−RQw. (6.4b)

The significance of the extra C∞ term (which could be generalized to depend on time) is
that of a mean field, allowing for a global coupling of fibers, which could hopefully lead
to constructing a spatially homogenized model for the evolution of a spatially dependent
〈R(z, t)〉 (corresponding to variations in imposed initial concentrations and/or variations in
fiber properties).

The governing equation for C0 would then be coupled to (3.10) with the sign of Qw again
reversed:

∂R

∂t
= χQw(C0), (6.5)

where we note that the deposition flux will now cause R to grow.

7 Ideas for Multiple Fiber Models in the D � 1 Limit

Let’s go back to a simpler version of the previous section and look at the D � 1 limit. A
fiber with radius R(z, t) is in the middle of a cylinder with radius F which is assumed to
contain the fluid. Therefore, we consider the dimensionless equation (2.6), but instead of
considering ε to be small, we consider D to be large and write our solution as the following
perturbation series:

C(r, z, t) = c0(r, z, t) +D−1c1(r, z, t) + · · · . (7.1)
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In this case, the leading two orders of (2.6) are

∇2c0 = 0, (7.2a)

∇2c1 =
∂c0

∂t
, (7.2b)

where we use the ∇ notation because we want our discussion to be as general as possible.
In addition, since the flux conditions all have D(∂C/∂n) on the left-hand side, functionally
they all become boundary conditions for c1:

∂c0

∂n
= 0 at all boundaries, (7.3)

∂c1

∂z
(z = 0) = 0,

∂c1

∂z
(z = h0) = −c0(z = h0)

dh0

dt
, (7.4a)

∂c1

∂r
(r = F ) = ε2k[c0(r = F )− C∞],

∂c1

∂r
(r = R) = Qw(c0(r = R)). (7.4b)

Here the second condition in (7.4a) comes from (3.12). The first condition in (7.4b) comes
from (6.1b), and the second condition in (7.4b) comes from (3.6).

Solving (7.2a) subject to (7.3), we have that c0 = c0(t) for any shape. Therefore, from
(3.10) we have that to leading order, R is independent of z as well, so (4.7) holds. As a
consequence, the volume of the domain of fluid is simply h0(t)Sh(t), where Sh(t) is the surface
area of the evaporating front at time t. In particular, in this domain we have Sh = π(F 2−R2

0),
as in the previous section.

Using this fact and integrating (7.2b) over the domain, we obtain

h0(t)Sh(t)
dc0

dt
=

∫
V

∇2c1 dV =

∫
S

∂c1

∂n
dS

= Sh

(
−c0

dh0

dt

)
+ (2πFh0)ε2k(c0 − C∞)− (2πRh0)Qw(c0), (7.5)

where we have used the Divergence Theorem. The first term comes from (7.4a) multiplied
by the area of the surface over which it holds (Sh). Similarly, the remaining terms come from
(7.4b) multiplied by the area of the surface over which they hold. Continuing to simplify,
we have the following:

h0
dc0

dt
+ c0

dc0

dt
=

2πFh0

Sh
ε2k(c0 − C∞)− 2πRh0

Sh
Qw(c0)

d(h0c0)

dt
=
SF
Sh
ε2k(c0 − C∞)− SR

Sh
Qw(c0), (7.6)

where SR = 2πRh0 is the area of the surface at R, and similarly for SF . If there is no flux
out of the domain at either R or F , the right-hand side vanishes, and the total concentration
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remains constant, as expected. The right-hand side is written in as general a form as possible,
as discussed in more detail below. Equation (7.6) is coupled with (3.10) and (2.19), and our
system becomes a more generalized version of the systems solved previously. In particular,
we no longer have to solve a partial differential equation.

Things become more interesting if we think about coupling together a number of such
subsystems. Assume we have a distribution of rods with radius R(j)(t) in domains of size F (j).
In each the concentration is c(j)(t), with an overall concentration C∞(t) in the liquid between
them. The total concentration in the interstitial space changes through the boundaries at
the F (j):

d(h0C∞)

dt
= −

∑
j

S
(j)
F

S∞
(c(j) − C∞), (7.7)

where S∞ is the surface area of the boundary to the interstitial space. Take the density of
fibers to be n per unit area. Then F ∝ n−1/2. There should be a geometric argument to
get the proportionality constant so that we have circles around each fiber and the remaining
fluid as interstitial.

At this point, all the rod subproblems are the same, so it’s really just two equations, one
for c0 and one for C∞. An interesting complication to consider would be to construct a prob-
ability density function of initial radii p(R(0)), which obviously increases the dimensionality
of the problem. One can work in this augmented space, solving one set of ODEs for each R0

and producing means and variances of the corresponding solutions. Since this isn’t a linear
problem, Monte Carlo simulations would probably be needed to compute expectation values.

2R sec θ
θ

2R

h sec θh

θ

Figure 7.1: Cross section of oblique cylinder.

One could also think about the angle θ(j) between each rod and the vertical. In the
lumped formulation above, all that changes are the geometric factors, as shown in Fig. 7.1.
In particular, the effective dimensions of the fiber are changed by a factor of sec θ. Hence if
we still consider the full domain to be a right circular cylinder of radius F , then Sh becomes
π(F 2−R2 sec2 θ), and SR becomes 2πh0R sec2 θ. One could then consider another probability
density function g(θ) for the angle. The angle can’t be too large or this model breaks down.

The basic rod-in-tube model with (r, z, t) dependence requires numerical solution as R(t)
evolves. There may be a way of obtaining a solution with fixed R and a moving upper
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boundary using the “boost theorem” of [11], but the workshop ended before we had time to
explore the idea fully.

Another possibility may be a reduced model in which the fibers are just treated as δ-
function sinks for the flux:

∂C

∂r
(r(j)) = δ(r − r(j))Qw(c

(j)
0 ), (7.8)

where r(j) is the position of the jth fiber, with the usual boundary conditions on z = 0 and
z = h(t). This is a dilute model since it neglects the area taken up by the fibers, though
that area can still be tracked using (3.10). There is still possible two-way coupling between
the fluid and fibers depending on the form of Qw. It might be possible to make analytical
progress in the case of (3.13) and constant E, again using [11]. An open question is whether
this would lead to a useful mean-field model based on the mean/statistical properties of the
fiber distribution.

8 Homogenization for the Exterior Problem

We now adapt some relevant results from [14]. The authors consider a cleanup problem in
which a cleanser interacts with an agent surrounding circular pore walls and removes the
agent. (Similar modeling can be done when deposition happens around spherical nodes [12].)
In our problem, deposition occurs on the outside of fibers that are taken to have circular
cross-sections. We can adapt their work as follows.

In [14], two scales appear in the problem: a microscale corresponding to the thickness
of the fibers, and a macroscale corresponding to the dimensions of the filter. Their ratio is
taken to be a small parameter which we denote as δ, which means that on the filter spatial
scale, the fibers are very small, which is similar to the δ-function approach in (7.8).

By choosing t∗ to be the time scale corresponding to diffusion in the entire filter, we
obtain D = δ−2 in our previous equations, which hold on the microscale. Hence as in Sec. 4,
we find that the leading order of the concentration is independent of the microscale variables,
and must be a function only of t and the macroscale variables. The approach is quite generic
and can be adapted (theoretically at least) to any geometry.

In order to fully implement the method, one needs (a) a good 3D diffusion equation solver
that can deal with a moving boundary in the vertical; and (b) a reliable solution for the unit
cell (microscale) problem. Actually there may be decent approximations for the latter that
would be good enough here, and a lookup table (offline) approach might be efficient and
accurate enough. But quite a bit more work would be required to implement all of this.

For our reduced problem, it is enough to know that the homogenization process replaces
the constant diffusion coefficient D with one that changes with the porosity of the matrix,
which changes as R(t) evolves. In general, D would be a tensor, but as we are considering
diffusion only in the z-direction, we may treat D as a scalar.
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Then using a similar notation to Sec. 3, the homogenized model reads

∂

∂t
(V (R)C) = D

∂

∂z

(
B(V (R))

∂C

∂z

)
− L(R)Qw, in 0 < z < h(t), (8.1a)

C
dh

dt
= −DB(V (R))

∂C

∂z
, at z = h(t), (8.1b)

where B is a factor that relates the radius R (and hence the porosity of the matrix) to the
diffusion coefficient. The other variables are as before. In particular, here Qw is given by
(3.13), and C is subject to the conditions in (2.12b). The evolution of R(t) is governed by
(6.5) and (3.11). For the evolution of the evaporation front h(t), we use (3.14) subject to
(2.12a).

From [5], we have that for a square lattice of fibers we can use

V (R) = 1− (1− V0)R2, (8.2)

L(R) = 2πR, (8.3)

B(V ) =
1

1− V

(
1− 2V

1 + V − 0.3058V 4

)
, (8.4)

where V0 is the initial volume fraction. (Similar values can be found in [5] for a hexagonal
lattice.)

To illustrate how the model behaves we ran simulations using a numerical scheme similar
to the one described in Sec. 3.2. We show the results in Figs. 8.1–8.2, which show significant
similarities with Figs. 3.1–3.3. Notice that in our case, as the material builds up around
the fibers, the precipitate thickness is the variable R which is larger than one (which is the
initial fiber radius).

Figure 8.1 shows the behavior of the system setting all the parameters to 1, except for
the initial volume fraction which is set to 0.6 and 0.4 respectively. Compared to the results
in a tube, the volume fraction appears as a new parameter of the system and, naturally, the
lower the initial volume fraction the faster the clogging occurs. Apart from that, we observe
very similar behavior to the tube model (Fig. 3.1), especially for the large initial volume
fraction.

Looking at Fig. 8.2 we observe similar delaying effects when Csat is larger than the initial
concentration. Finally, Fig. 8.3 shows the effect of the diffusion coefficient in the system.
Again, as it could be expected, faster diffusion delays the clogging.

In conclusion, this simple homogenized model captures the same features as the narrowing
tube model posed in Sec. 3 but it introduces some new features such as the effect of the
porosity (or volume fraction) in the model. These simulations could be easily extended for
the hexagonal lattice, and with some extra work more complex geometries could be taken
into account.
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Figure 8.1: Comparison of effect of volume fraction on solution profiles. Diagrams are as in
Sec. 3.2, with the addition of a dotted line on height graph indicating the line of symmetry
where clogging will occur. All parameters equal to 1, except for initial volume fraction,
which is 0.6 (top) and 0.4 (bottom).
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Figure 8.2: Comparison of effect of saturation on solution profiles. Parameters are as in the
top figures in 8.1, except that Csat = 2.

9 Additional Physical Considerations

In the previous sections, we presented only those models for surface adsorption and evap-
oration directly used in our solutions. In this section we present additional, more general
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Figure 8.3: Comparison of effect of diffusion coefficient on solution profiles. Parameters are
as in the top figures in 8.1, except that Csat = 1.1, and D = 0.1 at top D = 10 at bottom.

models of some of the major additional effects that were deferred.
Specifically, the original problem description noted that the solute or solutes were surface

active and, as such, adsorb to the liquid-gas interface. Moreover, at concentrations exceedng
the critical micelle concentration, surfactant molecules can form micelles that likely also
can precipitate onto the tube walls. It is also well-known that surfactant adsorption onto a
liquid-gas interface can hinder liquid evaporation. This writeup extends the existing model
to include descriptions of these additional issues.

Naturally there remain other issues that we do not take up in detail. For instance, if the
aspect ratio of the pore is not small, the contact angle of the interface with the tube wall will
come into play. In addition, there may be potential deposition from a contact line receding
due to liquid evaporation.

9.1 Wall Dynamics

As discussed in Sec. 2.1, if the solute is taken to be surface active, then a simple model for
adsorption is given by the Langmuir isotherm (2.17), which we further simplified using the
linear relation (2.18).

One can easily change the choice of isotherm should data from Gore suggest that another
isotherm describes the surfactant’s interaction with the interface better. For instance, one
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can use the Frumkin model, which is given by (in our notation)

Γe−AΓ

1− Γ
= KC, (9.1)

where we have dropped the dot subscripts for simplicity. (Here we have taken the equilibrium
value of Γ = 1 because of the normalization we used.) Note that if we take A = 0, then we
have

Γ = KC(1− Γ)

Γ =
KC

1 +KC
,

which is exactly (2.17).
Also note that in Sec. 2, we did not model narrowing of the pore by adsorption, and the

narrowing we did discuss in Sec. 3 was assumed to follow a different mechanism. If we do
allow pore narrowing due to surface adsorption, we would simply replace Qw by ∂Γw/∂t in
(3.10), yielding

∂R̃

∂t̃
= −χ̃∂Γ̃w

∂t̃
, (9.2)

where χ̃ can now be interpreted as the size added to the wall per adsorbed surfactant
molecule.

Note that (2.17) and (9.1) are equilibrium models: in other words, Γ instantly equilibrates
with the value of C just inside the interface. In actuality, there is a time scale on which
the surfactant achieves a local equilibrium distribution (i.e., isotherm) between its surface
concentration and that bulk concentration immediately inside the interface. Hence we have
implictlly assumed that this time scale is much shorter than the time for interface motion
and for bulk concentration variation in the interface sublayer.

If instead the time scale for adsorption is similar to bulk diffusion, then we would have
to track the evolution of Γ directly; one nonequilibrium version is given by [6]

∂Γ

∂t
= e−AΓ2

[KC(1− Γ)− Γe−AΓ],

the steady state of which is given by (9.1). Taking A = 0 in the above, we obtain

∂Γ

∂t
= KC(1− Γ)− Γ, (9.3)

the steady state of which is given by (2.17). The form (9.3) provides fuller physical insight
into our models for wall dynamics.

In particular, the Langmuir and Frumkin isotherm models describe rapid equilibration of
the adsorption of a surfactant molecule to a surface site (first term on the right-hand side)
and its desorption from the same surface site (second term). This analysis is subject to the
caveat that the total number of surface sites for adsorption (those with plus those without
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a molecule of adsorbed surfactant) is fixed and fairly small. Thus the number of free sites
changes appreciably with time [(1− Γ) term in (9.3)].

Though the Langmuir isotherm works well for adsorption at the interface, upon further
reflection we realized that wall deposition is more complicated. First, wall deposition happens
on a slow time scale, which is inconsistent with the rapid equilibrium of the isotherm models.
Hence using an equation similar to (9.3) made more sense.

We also assumed that deposition would be irreversible (which would imply ignoring the
second term on the right-hand side of (9.3)), and that the number of wall surface sites is
so large that the number occupied is negligible (which would imply replacing the first term
with KC). In that case, keeping in mind that Qw and ∂Γ/∂t play similar roles, we obtain
an equation very similar to (3.13).

9.2 Evaporation

Though in (2.19) we postulated that the evaporation rate may depend on concentration, for
our simulations we used (3.14), which has a constant evaporation rate. However, even in the
case where E is independent of concentration, it may still depend on the drying temperature.
It may also depend on the humidity differential, which may change over the course of the
drying due to changes in C at the interface.

It has been well known since a 1925 paper [17] that a surfactant monolayer can inhibit
the evaporation of liquids like water. Literature focusing on liquid layers heated from below
(not our interest) identifies a significant lowering of the evaporation due to the inherent
resistance to evaporation of the surfactant layer itself.

Plots that summarize experiments typically use the ratio Eclean/Esurfactant of clean surface
to surfactant-loaded surface evaporation rates as the dependent variable. We have found two
types of relevant data sets (e.g., [1]). In the first, the logarithm of the ratio of evaporation
rates is exponential in the surfactant concentration Γh. In the second, the logarithm of the
ratio of evaporation rates is found to be nearly linear in the surface pressure, defined as the
difference between the surface tensions σ of the clean and surfactant-laden interfaces. These
trends are similar but not identical.

In order to analyze the variation with surface pressure, we find data suggesting that,
for many surfactants, the change in the ratio (σsurfactant/σclean) of the surface tension of the
surfactant-laden to that of the clean surface with increasing bulk concentration C is nearly
flat at one for small bulk concentrations and then turns into a decline that is proportional to
− lnC and persists until the critical micelle concentration or CMC. If we approximate this
curve by two straight lines that intersect at a concentration C∗, then we can approximate
the data by

σsurfactant

σclean

=

{
1, 0 < C < C∗,

1− ln C
C∗
, C∗ < C < CCMC.

(9.4)

Combining this relation with the the given exponential decay of the ratio of evaporation
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rates with the surface pressure, one easily finds

Esurfactant

Eclean

=

(
C

C∗

)−b
=⇒ E(t) = Eclean

(
C

C∗

)−b
, (9.5)

where b is the slope of the ln(Eclean/Esurfactant) vs. surface pressure curve, and we have used
the fact that in our notation, Esurfactant is the evaporation rate E(t).

Alternatively, if one combines an exponential growth of Eclean/Esurfactant as a times the
surfactant concentration Γh with the Langmuir isotherm, one gets

Esurfactant

Eclean

= exp

(
−a KhC

1 +KhC

)
=⇒ E(t) = Eclean exp

(
−a KhC

1 +KhC

)
. (9.6)

Both of these equations give similar dependences over a regime of C not too large, and both
can be used in (2.19) to track h(t).

A final note: the vapor pressure of a mixture of water and a non-volatile solute is propor-
tional to the mole fraction of water. So, as long as the solute does not appreciably change
the mole fraction of water, the vapor pressure remains essentially unchanged.

9.3 Micelles

When its concentration exceeds a critical micelle concentration CCMC, the surfactant can
form micelles that can also dissolve back into individual surfactant molecules. We model this
process by a simple mass action kinetic equation. Let M be the (dimensionless) concentration
of micelles, which we assume each to be comprised of N surfactant molecules. Then we find
the net (dimensionless) rates of change, fM of micelle concentration and fC of monomer
surfactant molecules, due to reaction, are

fM = ka(C − CCMC)N − kdM = −fC
N
, (9.7)

where ka and kd are the association and dissociation rate constants, respectively. Here the
factor of N is due to the fact that N surfactant molecules must combine to form a micelle.
This new rate of change may be added directly to (3.9) to yield

∂(C0[R(z, t)]2)

∂t
= D

∂

∂z

(
[R(z, t)]2

∂C0

∂z

)
− 2R(z, t)Qw(C0)−N [R(z, t)]2fM , (9.8)

where the R2 term arises from the fact that micelle formation occurs throughout the domain.
These micelles can also precipitate out of solution onto the walls at a rate QM . The

equations for surfactant precipitation assume that the concentration of surfactant in the
liquid at the wall is Csat and that of the micelles is zero, meaning that as soon as a micelle
reaches the wall, it precipitates. Both equations assume that the rate of precipitation onto
the wall is fast compared with sublayer diffusion and thus sublayer diffusion controls the
overall rate.
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Given these facts, we see that the evolution equation for M is quite similar to (9.8):

∂(M [R(z, t)]2)

∂t
= DM

∂

∂z

(
[R(z, t)]2

∂C0

∂z

)
− 2R(z, t)QM(M) + [R(z, t)]2fM . (9.9)

It is reasonable to assume that in solution both the surfactant and the micelle are roughly
spherical. In that case we may use the Stokes-Einstein relation, which states that the molec-
ular diffusivity is inversely proportional to the molecular radius, to obtain DM = D/N1/3.

We assume that initially there are no micelles, and the symmetry condition at z = 0
must also hold:

M(z, 0) = 0,
∂M

∂z
(0, t) = 0.

It is reasonable to assume that micelles don’t adsorb to the interface, but first decompose in
the liquid since there is no indication that micelles exist on the interface. This is because a
micelle exists in order for ampiphillic molecules to shield their hydrophobic potions from the
aqueous environment; at the interface, the interface itself does that. Hence the evaporation
front condition for M is similar to (3.12), where we assumed no adsorption:

DM
∂M

∂z
(h0(t), t) +M(h(t))

dh

dt
= 0. (9.10)

We may also postulate a constitutive equation analogous to (3.13) for deposition of
micelles:

QM = λMM, (9.11)

with a new mass transfer coefficient λM replacing λ. These coefficients are each presumed
to represent the ratio of the molecular diffusivity to the thickness of a diffusive sublayer
for each species adjacent to the wall. It is reasonable to assume that the thickness of this
sublayer is similar for surfactant molecules and for micelles. In that case we may also use
the Stokes-Einstein relation to obtain λM = λ/N1/3. The expression for QM assumes that
only single surfactant molecules and not micelles desorb from the wall.

Since there are now two deposition mechanisms, (3.10) would be replaced by

∂R

∂t
= −χ(Qw +NQM),

with the extra factor of N due to the fact that each micelle contributes N molecules to the
layer.

Many of the parameters of the original MPI model were estimated during the MPI. The
few additional unknown parameters for micelle formation and retardation of the evaporation
rate herein await further input from Gore.

Nomenclature

Units are listed in terms of length (L), moles (N), and time (T ). If a symbol appears
both with and without tildes, the symbol with tildes has units, while the one without is
dimensionless. Equation numbers where a variable is first defined is listed, if appropriate.
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A: dimensionless constant in Frumkin model (9.1).

a: decay constant in evaporation model (9.6).

B: factor relating diffusion coefficient to porosity (8.1a).

b: decay exponent in evaporation model (9.5).

C̃(r̃, z̃, t̃): volume concentration of particle in pore, units N/L3 (2.1).

C: expansion of C for small D and ε (4.1).

c: expansion of C for small D (7.1).

D̃: diffusion coefficient, units L2/T (2.1).

Ẽ: evaporation rate, units L/T (2.19).

F : far-field radius, dimensionless (6.1a).

f : dimensionless rate of change of concentration due to micelle formation (9.7).

g(θ): proposed probability density function for θ.

H: maximum height of pore, units L (1.2).

h̃(r̃, t̃): evaporation front, units L (1.1).

j: indexing variable (7.7).

K: dimensionless equilibrium constant (2.17).

k: dimensionless constant relating bulk and boundary concentration (2.9) or dimensionless
rate constant (9.7).

M : dimensionless micelle concentration (9.7).

N : number of molecules per micelle (9.7).

n: fiber density.

p: probability density function for initial radii.

Q̃w: deposition flux, units N/L2T (3.1).

R: radius of pore, variously defined (1.1).

r̃: radial variable in pore, units L (1.1).

S: surface (7.5).

t̃: time variable, units T (1.1).

V : volume (8.1a).

Z: the integers.

z̃: height variable in pore, units L (2.1).

α: surplus of the contact angle over π/2 (1.1).

β: constant in large-D solution (4.5).

δ: ratio of length scales in homogenization problem.

Γ̃: area concentration, variously defined, units N/L2 (2.2).

ε: small aspect ratio (1.3).

θ: angle of fibrous rod with vertical.

λ̃: coefficient in precipitation constitutive law, units L/T (3.13).

σ: surface tension (9.4).

χ̃: constant relating wall growth to precipitation flux, units L3/N (3.2).
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Other Notation

a: as a subscript on k, refers to association (9.7).

C: as a subscript, refers to bulk concentration (9.7).

c: as a subscript on t, refers to the clogging time.

d: as a subscript on k, refers to dissociation (9.7).

CMC: as a subscript on C, refers to the critical micellular concentration.

F : as a subscript on S, used to refer to the outer surface (7.6).

H: as a subscript on ∇, used to refer to horizontal derivatives (8.1a).

h: as a subscript, used to refer to the evaporation front (2.13).

i: as a subscript, refers to the initial condition (2.3).

j ∈ Z: as a subscript, used to refer to a perturbation series (1.4). As a superscript, used to
refer to a fiber (7.7).

M : as a subscript, refers to micelles (9.7).

R: as a subscript on S, used to refer to the inner surface (7.6).

sat: as a subscript, refers to a saturation value (3.13).

T: as a subscript on Γ, used to refer to a total number of adsorption sites (2.5b).

w: as a subscript, used to refer to the pore wall (1.1).

∞: as a subscript, refers to a far-field condition (6.1b).

∗: as a subscript, refers to a characteristic value (2.5a).

〈·〉: cross-sectional average (2.16).
ˆ : refers to an expansion for large λ (5.2).

References

[1] Barnes, G.: The effects of monolayers on the evaporation of liquids. Advances in Colloid
and Interface Science 25, 89–200 (1986)

[2] Breward, C., Howell, P.: Straining flow of a micellar surfactant solution. Euro. J. Appl.
Math. 15(5), 511–531 (2004)

[3] Breward, C.J., Howell, P.: Modeling surfactant systems out of thermodynamic equilib-
rium. SIAM J. Appl. Math. 79(3), 1098–1123 (2019)

[4] Breward, C.J.W., Griffiths, I.M., Howell, P.D., Morgan, C.E.: Straining flow of a weakly
interacting polymer-surfactant solution. Euro. J. Appl. Math. 26(5), 743–772 (2015)

[5] Bruna, M., Chapman, S.J.: Diffusion in spatially varying porous media. SIAM Journal
on Applied Mathematics 75(4), 1648–1674 (2015)

[6] Chomaz, J.M.: The dynamics of a viscous soap film with soluble surfactant. Journal of
Fluid Mechanics 442, 387–409 (2001)



Breward, et al. 35

[7] Edmonstone, B.D., Craster, R.V., Matar, O.K.: Surfactant-induced fingering phenom-
ena beyond the critical micelle concentration. J. Fluid Mech. 564, 105–138 (2006)

[8] Edwards, D., Brenner, H., Wasan, D.: Interfacial transport processes and rheology.
Butterworth-Heinemann (1991)

[9] Hennessy, M.G., Breward, C.J.W., Please, C.P.: A two-phase model for evaporating
solvent-polymer mixtures. SIAM J. Appl. Math. 76(4), 1711–1736 (2016)

[10] Kaplan, C.N., Mahadevan, L.: Evaporation-driven ring and film deposition from col-
loidal droplets. J. Fluid Mech. 781 (2015)

[11] King, M.J.: Immiscible two-phase flow in a porous medium: Utilization of a laplace
transform boost. Journal of mathematical physics 26(4), 870–877 (1985)

[12] Kiradjiev, K.B., Breward, C.J.W., Griffiths, I.M., Schwendeman, D.: A Homogenised
Model for a Reactive Filter. SIAM J. Appl. Math. (2020). Under Review

[13] Kiradjiev, K.B., Nikolakis, V., Griffiths, I.M., Beuscher, U., Venkateshwaran, V., Bre-
ward, C.J.W.: A Simple Model for the Hygroscopy of Sulfuric Acid. Ind. & Eng. Chem.
Res. 59(10), 4802–4808 (2020)

[14] Luckins, E., Breward, C., Griffiths, I., Wilmott, Z.: Homogenisation problems in reac-
tive decontamination. European Journal of Applied Mathematics pp. 1–24 (2019)

[15] Morgan, C.E., Breward, C.J.W., Griffiths, I.M., Howell, P.D.: Mathematical modelling
of surfactant self-assembly at interfaces. SIAM J. Appl. Math. 75(2), 836–860 (2015)

[16] Perez, E.B., Carvalho, M.S.: Drying of thin films of polymer solutions coated over
impermeable substrates. Heat Transfer Engineering 28(6), 559–566 (2007)

[17] Rideal, E.K.: On the influence of thin surface films on the evaporation of water. The
Journal of Physical Chemistry 29(12), 1585–1588 (1925)

[18] Shokri, N., Or, D.: What determines drying rates at the onset of diffusion controlled
stage-2 evaporation from porous media? Water Resources Research 47(9) (2011)

[19] Willmott, G.R., Neto, C., Hendy, S.C.: Uptake of water droplets by non-wetting capil-
laries. Soft Matter 7(6), 2357–2363 (2011)

A Appendix

A typical pore has radius R = 5µm, while it has a typical length of H = 100µm.
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We have parameter values of

D̃ =
10−10 m2

s
, (A.1)

Ẽ =
5 g H2O

m2 ·min

[
10−6 m3 ·min

g(60 s)

]
= 8.33× 10−8 m

s
. (A.2)

Note that if we choose t∗ = H/Ẽ as discussed below (2.19), then

D =
D̃

ẼH
=

10−10

(8.33× 10−8)(10−4)
= 12,

which might be large enough to do some large-D asymptotics.
The CMC limit is supposed to be

CCMC = 5× 10−4 mol

L
. (A.3)

The initial volume concentrations will be around

Ci = 10−7 mol

L
. (A.4)

The maximum surface pore concentration will be around

Γw,T = 1.02× 10−7 mol

m2
(A.5)

This assumes a radius of 1 nm, and 74% of the surface area is covered. We may use the
same value for Γh,T.

Note that these values make kw large:

kw =
2(1.02× 10−7 mol/m2)

(10−7mol/L)(5× 10−6 m)
=

(0.408× 106)(10−3 m3)

m3
= 408. (A.6)

However, since the K values are unknown, they may be small enough to generate the balance
needed in the narrowing section.
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We are interested in finding the deposition concentration of soluble surfactants (monomers)
along with micelle concentrations within a saturated porous membrane as the solvent evap-
orates isothermally. Note that the thickness of the membrane (approximately 100 µm) is
comparable to the typical pore size (approximately 10 µm), so the porous medium approach
described here should be viewed as a crude approximation to the solute and moisture dynam-
ics within the membrane. A representative elementary volume with diameter covering the
membrane thickness would still barely cover a representative sample of pore sizes. A spatial
sequence of such sample volumes could reasonably represent a medium that was 10 times
thicker (i.e., at least at the millimeter scale.) Given the thinness of the layer compared to
the typical spanwise lengths of the membrane, the evolution equations discussed here consist
of a single spatial dimension corresponding to the thickness direction.

We model the flow within the membrane as a porous medium flow, with porosity θs
throughout the membrane. In addition, we assume that the porosity does not change over
time as the species deposits upon the membrane matrix. Hydrostatic pressures in this film
are assumed to be negligible, and the dynamics of the flow are driven primarily by capillary
pressure. Over a representative volume, this flow can be represented in terms of the moisture
content of the membrane. The moisture dynamics are governed by the continuity equation

∂θ

∂t
+
∂q

∂z
= 0, (1)

where 0 ≤ θ ≤ θs < 1 is the volumetric moisture content of the porous medium, θs is
the maximum moisture content, corresponding to the porosity of the medium, and q is the
Darcy flux within the medium. Since hydrostatics are assumed to be negligible compared to
capillary-driven flows, the Darcy flux is given by

q = K(θ)Ψ′(θ)
∂θ

∂z
= −Dw(θ)

∂θ

∂z
, (2)
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where K(θ) = k(θ) ρ g/µ is the scaled permeability of the porous medium, µ is the fluid
dynamic viscosity, Ψ is the capillary head, or the capillary pressure divided by the specific
weight of the fluid. These topics can be described in more detail in Bear’s text [1], along
with the paper by Stewart & Broadbridge [2]. Dw needs to be positive, strictly increasing
and its rate is also strictly increasing (Dw > 0, D′w > 0, and D′′w > 0). Formally, we follow
[2] and use the form

Dw =
a

(b− θ)2
,

for convenience. This choice gives an integrable model for the nonlinear diffusion equation
that can be transformed to the linear diffusion equation and solved, subject to standard
boundary conditions. For porous media, b/θs is typically between 1.05 and 1.2, and a is the
characteristic dimensional value of Dw. In this report, we set b = 1 for convenience [3].

The continuity equation simplifies to

∂θ

∂t
=

∂

∂z

{
Dw(θ)

∂θ

∂z

}
, t > 0 , 0 < z < H, (3)

where H is the half-thickness of the membrane.
The dynamics of the flow in the membrane are driven by evaporation, and there are two

distinct stages of evaporation that have been described for soils. The first stage corresponds
to a constant evaporation rate at the surface of the porous medium. In this stage, the
atmospheric kinetics control the evaporation rate. In the second stage, which represents a
falling evaporation rate, percolation of the flow within the porous medium is the limiting
factor in the removal of water through evaporation. These stages can be represented in terms
of the relative humidity h. Stage 1 evaporation corresponds to h ≈ 1 while evaporation for
stage 2 corresponds to h < 1.

To model the absorption-desorption processes for the surfactant, we consider a model by
Rosen [4] which captures the rate of the total concentration c which is mass of transported
material (both mobile dissolved component and immobile component) per unit volume of
water content as a result of diffusion and convection. In the fluid phase

∂c

∂t
+ v · ∇cm = D∇2cm , (4)

where v is a prescribed velocity, D is the diffusion constant of the species, and cm =
cs c/(cs + c) is the mobile concentration of the surfactant within the solution. cs is the
maximum concentration possible within the solvent. Michaelis-Menten kinetics are assumed
to take place at a much faster rate than diffusion or advection in this model. If precipita-
tion is bimolecular and solution is monomolecular, then cmc = cs(c − cm) where cm is the
concentration of mobile component in solution and c − cm is the precipitate concentration,
c is the total gravimetric concentration and cs is a constant that is interpreted as maximum
saturated level of dissolved solute. Then it follows that

cm(x, t) =
c

1 + c/cs
→ cs, c→∞, (5)

∼ c, c→ 0. (6)
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Extending this model to our porous medium (e.g. see [5] for a non-reacting species
example) gives

∂ (θ c)

∂t
− ∂

∂z

[
Dw(θ)

∂θ

∂z
cm

]
=

∂

∂z

[
D∗ θ

∂cm
∂z

]
, (7)

where D∗ here is the dispersivity (see [5]). Note that the water concentration θ is volume of
water per unit volume of total porous material mixture, whereas c is the mass of transported
species per unit volume of water, and concentration θc is the mass of transported species
per unit volume of porous material mixture.

To determine the immobile species concentration based on volume of mixture, we look
at the remaining components after eliminating the mobile component as

θcim = θ (c− cm) . (8)

Note that this formulation automatically accounts for the deposited immobile component.
However after extensive drying, the species concentration will be largely the immobile com-
ponent which is a small concentration of water θ multiplying a large concentration cim based
on a small water volume. Finally, for this problem we expect that the evaporation rate is
relatively slow compared to the porous medium flow. This suggests that stage 1 for evap-
oration only, and our boundary conditions for the problem are symmetry conditions along
z = 0, and evaporation and no species flux conditions along z = H:

z = 0 :
∂θ

∂z
=
∂c

∂z
= 0 , (9)

z = H : −Dw(θ)
∂θ

∂z
= R∗ , (10)

Dw(θ)
∂θ

∂z
cm + θ D∗

∂cm
∂z

= 0 . (11)

Finally we assume that the membrane is initially fully saturated and has a uniform monomer
distribution

θ(z, 0) = θs , c(z, 0) = c∗i . (12)

Before developing a computational approach to solve (3), (7) subject to boundary con-
ditions (9), (10), and (11) and initial conditions (12), we apply nondimensionalization. We
scale species concentration on the largest mobile concentration cs, z on the half-thickness of
the membrane H, and t on the Darcy-flow time scale H/a, where a is the value of diffusivity
at low moisture content. With this choice of scales, H ≈ 10−4 m, a ≈ 10−11 m2/s and H/ā ≈
17 min. The characteristic time for the membrane to dry in Gore’s experiments is around
33 min, so we are concerned in this problem with 0 < t < 2 approximately. Applying these
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scales to our system we find

∂θ

∂t
=

∂

∂z

{
Dw(θ)

∂θ

∂z

}
, t > 0 , 0 < z < 1, (13)

∂ (θ c)

∂t
− ∂

∂z

[
Dw(θ)

∂θ

∂z
cm

]
=

∂

∂z

[
D θ

∂cm
∂z

]
, (14)

z = 0 :
∂θ

∂z
=
∂c

∂z
= 0 , (15)

z = H : −Dw(θ)
∂θ

∂z
= R , (16)

Dw(θ)
∂θ

∂z
cm + θ D

∂cm
∂z

= 0 , (17)

t = 0 : θ(z, 0) = θs , c(z, 0) = ci , (18)

where the nondimensional reaction parameter R = R∗H/a, and the scaled dispersivity D =
D∗/a.

To computationally model (13)–(18), we apply finite differences in space, and a full Crank-
Nicholson formulation in time. Since the moisture content θ is decoupled from the species,
we solve (13) first, and then use this data to solve for the monomer species concentration.
For (14), we solve for cm directly using the nondimensional definition for cm

c =
cm

1− cm
.

The simulation continues until the surface moisture content reaches a small and finite value.
Note that θ → 0 is a singular limit in the species equation, and we expect θ to reach zero
first at z = 1. In the solutions which follow, we stop the simulation when θ(1, t) < ∆z,
where ∆z is the spatial mesh spacing.

From the given time scale, we can calculate an estimate of the nondimensional evaporation
coefficient, which then provides a single parameter to explore, being the nondimensional
dispersivity D. We use the moisture content equation to find an R where dryout occurs near
t = 2. Then we explore immobile surfactant distributions based on dispersivity. A good
estimate appears to be R = 0.25, as is shown in Figure 1, where we have chosen θs = 0.6
based on Gore’s values for the membrane porosity. Note that the final moisture content at
the end of this stage is below 20 %.

The monomer distribution during the removal of solvent from the membrane depends
significantly on the dispersivity parameter D. In Figure 2 we consider the evolution of the
mobile component (Figure 2a) and the immobile component (Figure 2b). We note that the
concentration of each component increases over time, as would be expected since the volume
of solvent is decreasing over evaporation. For later times, however, we note the increase in
concentration near the membrane surface.

While the immobile species concentration increases near the membrane surface at the
end of stage 1 for D = 1, Figures 3 and 4 show different species evolution of the mobile
and immobile components for D = 4 and D = 8, respectively. For D = 4 in Fig. 3, the
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Figure 1: Evolution of moisture content over the membrane half-thickness 0 < z < 1 for
R = 0.25, θs = 0.6, and D = 1 at nondimensional times t = 0, t = 0.5, t = 1, t = 1.5, t = 2.
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Figure 2: Evolution of monomer surfactant concentration for R = 0.25, θs = 0.6, and D = 1
at times t = 0, t = 0.5, t = 1, t = 1.5, and t = 2 for (a) mobile species, and (b) immobile
species.
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Figure 3: Evolution of monomer surfactant concentration for R = 0.25, θs = 0.6, and D = 4
at times t = 0, t = 0.5, t = 1, t = 1.5, and t = 2 for (a) mobile species, and (b) immobile
species.

steady decrease in the mean of the mobile component is balanced by the steady increase in
the immobile component. However, near the time of the loss of moisture on the membrane
surface, we see that the spatial variation of the immobile component is relatively uniform
throughout the domain, with a slight build-up of the species near the membrane surface.
Note that the centerline values of θ cim are similar at z = 0 and z = 1.

For D = 8, we find that the immobile component at the later stages of the simulation
is reduced near the membrane surface but increases more rapidly near the centerline. This
qualitatively agrees with the reports on experiments from Gore where for some cases a film
of surfactant remained near the membrane surface (in our case, D = 1), while other cases
resulted in the immobile component remaining within the bulk of the membrane (D = 8).
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Figure 4: Evolution of monomer surfactant concentration for R = 0.25, θs = 0.6, and D = 8
at times t = 0, t = 0.5, t = 1, t = 1.5, and t = 2 for (a) mobile species, and (b) immobile
species.
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1 Introduction

In Gore’s problem, there is a porous material that is filled with a liquid solution contain-
ing molecules from multiple species with known concentrations. As the solvent evaporates
these molecules are left behind on the internal pore walls within the porous material. This
subgroup in particular, was involved with the development of a mathematical model for the
mass distribution of these molecular species within the porous material structure after all
the solvent has evaporated completely given the porosity, pore size distribution, starting
concentrations of species, and solution properties (density, viscosity, and surface tension).
Ternary diagrams were chosen as the best tool to represent the modeling and evolution of
the different species involved, in this case the solvent (water) and two surfactants.
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1.1 Ternary Diagrams

A ternary diagram or ternary plot is a plot on three barycentric variables which sum to a
constant, usually normalized to 1. It graphically depicts the ratios of the three variables as
points on an equilateral triangle. It is used to show the compositions of systems composed
of three species.

Figure 1 represents a simple ternary diagram. Suppose our three species are N1, N2

and N3. The vertices marked A, B and C represent pure states, composed of all N1, all
N2 and all N3 respectively. Therefore, we may informally call A the N1 vertex, B the N2

vertex and C the N3 vertex. A line parallel to one of the sides, and opposite a vertex
indicates compositions which are constant with respect to the component represented by the
vertex. On the other hand, when we travel along a line that is not parallel to any side of
the triangle, or an arbitrary curve (see the green dotted line and blue curve, respectively, in
Figure 2), none of the three components will be constant in general: see Figure 2 for some
examples. In our problem, only planar, isothermal, ternary diagrams are of interest. More
general ternary diagrams reflect temperature changes; a “temperature tower” representation
in three dimensions is depicted in Figure 7 and discussed later in this report.

Figure 1: A simple ternary diagram. Vertex A is the “N1 vertex” corresponding to states
with all N1 but no N2, N3. Vertex B is the N2 vertex corresponding to states with all N2

but no N1, N3. Vertex C is the N3 vertex corresponding to states with all N3 but no N1,
N2.
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(a) (b)

Figure 2: (a) A simple ternary diagram with four trajectories representing evolving amounts
of N1, N2 and N3 such that N1 +N2 +N3 = 1. For the dashed red line, N2 is a constant and
for the solid blue line, N1 is a constant. (b) An empirical ternary diagram involving water,
and two surfactants CTAB (cetrimonium bromide) and SOS (sodium octyl sulfate).

1.2 Basic Description of the Model

Let N1 (t) , N2 (t) and N3 (t) be the mass of the two surfactants and water respectively (cor-
responding to surfactant A,B and water C in Figure 1). Let the total mass be

N (t) := N1 (t) +N2 (t) +N3 (t) .

Define mass fraction as

φi (t) =
Ni (t)

N (t)
, i = 1, 2, 3.

The surface defined by φ1+φ2+φ3 = 1 forms a 2-simplex of length one. The triple (φ1, φ2, φ3)
(a point on the simplex) represents a specific composition of the three fluids. Our goal is
to think of φk = φk(t) as time-dependent variables and model the dynamics of each of the
mass fractions, given an initial state (φ1(0), φ2(0), φ3(0)). We understand that N3 (t) (water)
decreases over time via evaporation at some given rate or governed by some evaporation law.
Water leaves the system and the trajectory ends near the line AB in Figure 2, indicating
that only the two surfactants are present by then, but as often happens, the problem is more
complex than this intuition suggests.

We also attempt to capture the notion of the critical micelle concentration (CMC). This
concentration corresponds to a critical mass fraction of surfactant in the solution mixture
such that any concentration above this threshold triggers micelle formation from this par-
ticular surfactant. In our model, we have two different CMCs for the two surfactants.
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2 A linear model

Assume N1(t), N2(t), N3(t) > 0 for all t ≥ 0. Suppose the mass of both surfactants does
not change. Furthermore if we assume the concentration of surfactants is small, there is no
micelle formation. Then we have the simple model

dN1 (t)

dt
= 0, N1 (0) = N1,0 (1a)

dN2 (t)

dt
= 0, N2 (0) = N2,0 (1b)

dN3 (t)

dt
= −α, N3 (0) = N3,0 (1c)

which has solutions

N1(t) = N1,0 (2a)

N2(t) = N2,0 (2b)

N3(t) = N3,0 − αt. (2c)

given that N1,0, N2,0 are sufficiently small but positive. Hence,

N (t) = N1,0 +N2,0 +N3,0 − αt. (3)

Defining N0 = N1,0 +N2,0 +N3,0, the mass fractions are

φ1 (t) =
N1,0

N0 − αt
=

φ1 (0)

1 − βt
(4a)

φ2 (t) =
N2,0

N0 − αt
=

φ2 (0)

1 − βt
(4b)

φ3 (t) =
N3,0

N0 − αt
= 1 − φ1 (t) − φ2 (t) , (4c)

where β = α
N0

is the non-dimensional rate of evaporation. The mass fractions φk, k = 1, 2, 3
follow the ODEs

dφ1

dt
= α

φ1

N(t)
(5a)

dφ2

dt
= α

φ2

N(t)
(5b)

dφ3

dt
= α

φ3

N(t)
− α

N(t)
, (5c)

(5d)

where N(t) is given by (3).
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In a more realistic model, the solution mixture can undergo phase changes. For example,
surfactants could form solid precipitates, or when the mass fraction of one of the surfactants
reaches some critical level (not necessarily the same for each surfactant), they could form
micelles. Assuming that N1, N2 are now amounts of non-micellar surfactant in solution, a
direct modification to the ODEs could be the following (now dropping the low concentration
restriction),

dN1

dt
= E1 (t) −D1(t) − A1 (t) , N1 (0) = N1,0 (6a)

dN2

dt
= E2 (t) −D2(t) − A2 (t) , N2 (0) = N2,0 (6b)

dN3

dt
= −α, N3 (0) = N3,0 (6c)

dNmic

dt
= Emic (t) , Nmic (0) = 0, (6d)

where Ei (t) is the evolution law for surfactant i after the CMC has been reached; A1, A2

are the adsorption rates of the surfactants to the sides of the pores; and D1, D2 are the
rates at which the surfactants form a solid precipitate. In the following analysis, we assume
A1 = A2 = D1 = D2 = 0.

Let Θ(x) be the Heaviside step function so Θ(x) = 1 when x > 0 and Θ(x) = 0 when
x ≤ 0. Then the reaction rate, E1 (t) , E2 (t) can be determined from mass action kinetics:

E1 (t) =

 −n1k+N
n1
1︸ ︷︷ ︸

Micelle Formation

+ n1k−Nmic︸ ︷︷ ︸
Micelle Dissociation

Θ (φ1 − φ1,crit) (7a)

E2 (t) =

 −n2k+N
n2
2︸ ︷︷ ︸

Micelle Formation

+ n2k−Nmic︸ ︷︷ ︸
Micelle Dissociation

Θ (φ2 − φ2,crit) (7b)

Emic (t) = −

(
2∑
i=1

Θ (φi − φi,crit)

)
k−Nmic︸ ︷︷ ︸

Micelle Dissociation

+ k+N
n1
1 Θ (φ1 − φ1,crit) + k+N

n2
2 Θ (φ2 − φ2,crit)︸ ︷︷ ︸

Micelle Formation

(7c)

where ni’s are the order of the reaction for the micelle formation of each surfactant respec-
tively and φi = Ni/(N1 + N2 + N3) as before. To maintain model tractability, we do not
distinguish between micelles formed by the two surfactants. Therefore, as long as one sur-
factant reaches its CMC, micelle formation commences; this is reflected in the summation
term on the Heaviside function involving the mass fraction of each surfactant in eq. (7c),∑2

i=1 Θ (φi − φi,crit). The dissociation rate of the micelles is captured by the first term in eq.
(7c). The accretion rate of the micelles is represented by the second and third terms, which
describe the contribution to micelle formation from either surfactant, providing it reaches its
CMC. Altogether, we see that the rates of change of all three species follow detailed balance.
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Note that φ1,crit and φ2,crit are two separate input parameters to the problem, but they
can potentially be related. A deeper analysis based on chemical potential can be used to
derive the rate terms E1 and E2.

3 Results

In this section, we discuss some preliminary results that rely on the solution of the system
of ODEs in eqs. (6) and the evolution rate functions in eqs. (7). The ODEs (6) are solved
subject to the initial conditions

N1 (0) = N1,0, (8a)

N2 (0) = N2,0, (8b)

N3 (0) = N3,0, (8c)

Nmic (0) = 0. (8d)

In the following discussion, our results abide by the following assumptions. Firstly, we do not
distinguish between the micelle production rate k− between the two surfactants. Secondly,
the moment micelle production begins, i.e., when at least one surfactant reaches its CMC,
micelles dissociate at a constant rate k+. Lastly, the order of reaction for each surfactant is
kept equal (except in figure 6).

In figure 3(a), we present the evolution of mass fraction of each species in the solution
mix with a given initial condition on the mass fractions, and a reaction order of 1 (so
n1 = n2 = 1). At the early stage of the evolution, water takes up the majority of total
mass while concentrations of the surfactants increase over time as water evaporates. The
Heaviside triggers, i.e., the arrival at the CMC of either surfactant, correspond to dNmic/dt
changing from 0 to > 0. The surfactants mass fractions eventually taper off to reach an
equilibrium while water has completely evaporated.

When the order of the reaction is increased to 3 (see figure 3(b)), the Heaviside triggers
are more pronounced, exemplified by the kinks in the evolution curves of the mass fractions
of the two surfactants (e.g., surfactant 2, near (time, φ2) = (1, 0.15)). Another kink (barely
visible from the blue curve for surfactant 1) near t = 1.5 for surfactant 1 is also present
when its mass fraction reaches CMC at φ2 = 0.1. Micelle formation occurs also more quickly
which eventually causes the surfactants to occupy less (and decreasing) mass fractions.

To visualise the evolutions of the species (water, surfactants 1 and 2) on a ternary dia-
gram, we plot their trajectories in figure 4 with various initial conditions and a fixed reaction
order of 1. Since mass fraction of water (vertical axis) is always decreasing due to evapo-
ration, a typical trajectory on the simplex will always travel “down” the plane, i.e., in a
direction with negative vertical component, from any initial conditions except the ones with
N3 (0). Numerically, we observe that the evolution of the mass ratio N1 (t) /N2 (t) of the two
surfactants remain close to the initial value N1 (0) /N2 (0) when n1 = n2 = 1, corresponding
to straight trajectories in the ternary diagram.
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Figure 3: mass fractions evolution according to eqs. (6) with fixed parameters α = 1, k− =
0.01, k+ = 0.005, Nmic (0) = 0, φ1,crit = 0.1 and φ2,crit = 0.15. Initial conditions are N1,0 = 3,
N2,0 = 5. Reaction orders are (a) n1 = n2 = 1; (b) n1 = n2 = 3.

In figure 5, we consider different reaction orders as chemical reagents such as surfactants
may possess vastly different chemical characteristics. The trajectory in blue is formed by
exactly the same parameter chosen in figure 4 for the same color. However, the trajectories
in red and black use a reaction of order 1 for surfactant 1, but order 2 and 3 respectively for
surfactant 2. The kink in the black curve (corresponding to a high reaction order) showcases
the start of micelle production and a completely different trajectory than the other two.
Especially towards the exhaustion of water near the bottom of the simplex, in the black and
red curves, the sharp turn towards (1, 0, 0) (corresponding to a pure state of surfactant 1)
indicates that surfactant 1 begins to occupy larger mass fractions. This is because surfactant
2 with its larger reaction order produces micelles and hence loses mass more quickly. We
also see that this effect is triggered earlier in the black curve when the reaction order of
surfactant 2 is further increased to n2 = 3.

In figure 6, we investigate the regime where the two surfactants have a relatively large
initial difference in mass fractions. We still vary only the reaction order of the second
surfactant similar to figure 4. Note that the CMC for the surfactant with larger initial
mass fraction is set much higher because we wish to visualise its evolution (or otherwise it
is always producing micelles). We see that the “kinks” in the curve (due to the onset of
micelle formation) are more pronounced when the reaction order is high (black curve with
n2 = 3), resembling the kinks in figure 3b (but with different initial conditions and CMCs).
Furthermore, the dynamics past the kink in the black curve exhibits first a quicker decrease
in mass fraction of surfactant 2 than the red and blue counterparts. Then it settles into a
relative equilibrium as micelle production and surfactant mass loss balance out while only
water evaporation is taking place. When water mass fraction is close to zero near the bottom
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of the simplex, we see a similar effect as in figure 4 where the mass fraction of surfactant 1
increases due to the rapid loss surfactant 2 due to rapid micelle formation.

Figure 4: Trajectories of mass fractions of water, surfactant 1 and 2 according to eqs. (6)
and eqs. (7) with fixed parameters α = 1, k− = 0.01, k+ = 0.005, Nmic (0) = 0, φ1,crit = 0.1
and φ2,crit = 0.15. Reaction orders are n1 = n2 = 1. Total mass is kept at a constant
N = N1,0 + N2,0 + N3,0 = 100. Initial conditions of the three species are: (red) N1,0 = 10,
N2,0 = 5; (blue) N1,0 = 3, N2,0 = 5; (black) N1,0 = 3, N2,0 = 10.

4 Future work

Although Gore’s suggestion was to devise a model for constant temperature, one of the refer-
ences provided [1] discussed the notion of a critical micelle temperature (CMT). Depending
on whether the temperature is below or above the CMT, our model for mass fraction evolu-
tion could be different. Taken together, the CMT and CMC can result in very complicated
evolutions of the system. For the non-isothermal case, we may have mass fractions that
change with respect to temperature, so that φk = φk(T, t) reflected by the inclusion of a
temperature axis in the ternary diagram: see figure 7. However, our current model does not
include the influence of ambient temperature.

Lastly, one may also consider a variational approach, such that the time-evolution of
the path on the simplex surface is described by some energy minimizing curve, along with
constraints imposed by the CMT or CMC. This aspect could be explored in future endeavors.
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Figure 5: Trajectories of mass fractions of water, surfactant 1 and 2 according to eqs. (6)
and eqs. (7) with fixed parameters α = 1, k− = 0.01, k+ = 0.005, Nmic (0) = 0, φ1,crit = 0.1
and φ2,crit = 0.15. Initial conditions are fixed at N1,0 = 3, N2,0 = 5. Reaction orders are:
n1 = 1, n2 = 1 (blue); n1 = 1, n2 = 2 (red); and n1 = 1, n2 = 3 (black).
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Figure 6: Trajectories of mass fractions of water, surfactant 1 and 2 according to eqs. (6)
and eqs. (7) with fixed parameters α = 1, k− = 0.01, k+ = 0.005, Nmic (0) = 0, φ1,crit = 0.15
and φ2,crit = 0.4. Initial conditions are fixed at N1,0 = 1, N2,0 = 19. Reaction orders are:
n1 = 1, n2 = 1 (blue); n1 = 1, n2 = 2 (red); and n1 = 1, n2 = 3 (black).
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Figure 7: Temperature Tower: at each level of the temperature, the “parabolic” red curve
separates the phases. The red straight lines are tie lines, such that linear combinations of any
two points (two possible choices of mixture compositions) on those stay in the same phase.
Otherwise, the mixture does not mix (in the white region). For each temperature, there
may (or may not in theory) exist a critical point (plait point) such that any perturbation
(in composition, or in temperature) to it will lead to a phase transition. We can track
the plait point for every temperature level to form a critical points line, climbing up the
“hypersurface” as temperature increases. Eventually, we will reach a temperature so high
that all fluids become gaseous and thus reach a 1-phase indefinitely unless the temperature
drops.
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